Fragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors
Authors
Abstract:
One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the attention of scientists, because peptidic inhibitors have many pharmacokinetic problems. In the present study, several small molecule BACE-1 inhibitors were extracted from Brookhaven Protein Databank (PDB) and subjected to dissection analysis to achieve constructing fragments. Atom type, hybridization, and bond order were considered for generated constitutional fragments (simplified structures). AutoDock version 4.2 was applied to dock various chemical fragments into BACE-1 active site. The benefits of such studies have been well revealed in previous reports. On the basis of obtained binding affinities, fragment-based ligand efficiency (LE) indices were estimated. These theoretical binding efficiencies were applied to further elucidate the key structural features of BACE-1 inhibitors. Typical results of the study were elucidated and we suggested the ways these findings might be beneficial to guide rational bioactive molecular developments. Our study confirmed that the evaluation of ligand-receptor interactions in terms of ligand efficiency indices (binding energy per atom and pKi per MW) could be a helpful strategy in structure-based drug discovery (SBDD) strategies.
similar resources
fragment-based binding efficiency indices in bioactive molecular design: a computational approach to bace-1 inhibitors
one of the most important targets in alzheimer disease is beta site amyloid precursor protein cleaving enzyme-1 (bace-1). it is a membrane associated protein and is one of the main enzymes responsible for amyloid β (aβ) production. up to now, a considerable number of peptidic and non-peptidic inhibitors of bace-1 have been developed. recently, small molecule bace-1 inhibitors have attracted the...
full textFragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors
One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the...
full texttheoretical binding efficiencies in bioactive molecular design: a case study on bace-1 inhibitors
full text
Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
full textApplication of Computational Methods for the Design of BACE-1 Inhibitors: Validation of in Silico Modelling
β-Secretase (BACE-1) constitutes an important target for search of anti-Alzheimer's drugs. The first inhibitors of this enzyme were peptidic compounds with high molecular weight and low bioavailability. Therefore, the search for new efficient non-peptidic inhibitors has been undertaken by many scientific groups. We started our work from the development of in silico methodology for the design of...
full textMy Resources
Journal title
volume 12 issue 3
pages 423- 436
publication date 2013-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023